A Partial Justification of Greene’s Criterion for Conformally Symplectic Systems

نویسندگان

  • RENATO C. CALLEJA
  • ALESSANDRA CELLETTI
  • CORRADO FALCOLINI
  • RAFAEL DE LA LLAVE
چکیده

Greene’s criterion for twist mappings asserts the existence of smooth invariant circles with preassigned rotation number if and only if the periodic trajectories with frequency approaching that of the quasi-periodic orbit are linearly stable. We formulate an extension of this criterion for conformally symplectic systems in any dimension and prove one direction of the implication, namely that if there is a smooth invariant attractor, we can predict the eigenvalues of the periodic orbits whose frequencies approximate that of the tori. The proof of this result is very different from the proof in the area preserving case, since in the conformally symplectic case the existence of periodic orbits requires adjusting parameters. Also, as shown in [13], in the conformally symplectic case there are no Birkhoff invariants giving obstructions to linearization near an invariant torus. As a byproduct of the techniques developed here, we obtain quantitative information on the existence of periodic orbits in the neighborhood of quasi-periodic tori and we provide upper and lower bounds on the width of the Arnold tongues in n-degrees of freedom conformally symplectic systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extension of Greene's Criterion for Conformally Symplectic Systems and a Partial Justification

Periodic and quasi-periodic orbits are important objects that explain much of the dynamics in several Hamiltonian models in Celestial Mechanics. Adding a friction proportional to the velocity of the particles , an increasingly common asumption in Celestial Mechanics, gives rise to conformally symplectic models. Greene's criterion for twist mappings asserts the existence of a KAM torus by examin...

متن کامل

Magnetic Field Lines, Hamiltonian Dynamics, and Nontwist Systems

Magnetic field lines typically do not behave as described in the symmetrical situations treated in conventional physics textbooks. Instead, they behave in a chaotic manner; in fact, magnetic field lines are trajectories of Hamiltonian systems. Consequently the quest for fusion energy has interwoven, for 50 years, the study of magnetic field configurations and Hamiltonian systems theory. The man...

متن کامل

Kam Theory for Conformally Symplectic Systems

We present a KAM theory for some dissipative systems (geometrically, these are conformally symplectic systems, i.e. systems that transform a symplectic form into a multiple of itself). For systems with n degrees of freedom depending on n parameters we show that it is possible to find solutions with n-dimensional (Diophantine) frequencies by adjusting the parameters. We do not assume that the sy...

متن کامل

Local Behavior near Quasi–periodic Solutions of Conformally Symplectic Systems

We study the behavior of conformally symplectic systems near rotational Lagrangian tori. We recall that conformally symplectic systems appear for example in mechanical models including a friction proportional to the velocity. We show that in a neighborhood of these quasi–periodic solutions (either transitive tori of maximal dimension or periodic solutions), one can always find a smooth symplect...

متن کامل

Reductions of Locally Conformal Symplectic Structures and De Rham Cohomology Tangent to a Foliation

where ω is a closed 1-form. ω is uniquely determined by Ω and is called the Lee form of Ω. (M,Ω, ω) is called a locally conformal symplectic manifold. If Ω satisfies (1) then ω|Ua = d(ln fa) for all a ∈ A. If fa is constant for all a ∈ A then Ω is a symplectic form on M . The Lee form of the symplectic form is obviously zero. Locally conformal symplectic manifolds are generalized phase spaces o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013